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The paper presents the results of a detailed experimental examination of fully 
developed asymmetric flow between parallel planes. The asymmetry was 
introduced by roughening one of the planes while the other was left smooth; 
the ratio of the shear stresses a t  the two surfaces was typically about 4: 1. 

The main emphasis of the research has been on establishing the turbulence 
structure, particularly in the central region of the channel where the two dis- 
similar wall flows (generated by the smooth and rough surfaces) interact. 
Measurements have included profiles of all non-zero double and triple velocity 
correlations; spectra of the same correlations a t  several positions in the channel; 
skewness and flatness factors; and lateral two-point space correlations of the 
streamwise velocity fluctuation. 

The region of greatest interaction is characterized by strong diffusional trans- 
port of turbulent shear stress and kinetic energy from the rough towards the 
smooth wall region, giving rise, inter alia, to  an appreciable separation between 
the planes of zero shear stress and maximum mean velocity. The profiles of 
length scales of the larger-scale motion are, in contrast to  the turbulent velocity 
field, nearly symmetric. Moreover, it appears that  a t  high Reynolds numbers 
the small-scale motion may in many respects be treated as isotropic. 

1. Introduction 
Detailed experimental examination of the structure of turbulent shear flows 

has, for the most part, been concerned with comparatively simple flows. I n  
internal flows, for example, a number of workers have made detailed turbulence 
measurements of fully developed flow in a circular-sectioned pipe and in a plane 
symmetric channel (Laufer 1951, 1954; Comte-Bellot 1965; Coantic 1967; Clark 
1968; Van Thinh 1967) but, until recently, no studies of equivalent depth had 
been made in ducts of more complex geometry. This focusing of attenbion on 
symmetric flows was natural since some of the features of the turbulent motion 
could most readily be discerned if the influence of others was absent or small. 

Practically important flows through ducts, however, do not commonly possess 
this simplifying feature. It may therefore be expected that any mathematical 
model of turbulence formulated with reference t o  existing experimental data for 
symmetric flows would exhibit deficiencies when used t o  predict more complex 
flows. It thus appeared desirable to undertake a thorough examination of the 
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turbulence structure in a flow which, in at  least one respect, was substantially 
more complicated than those which had hitherto attracted attention. 

The geometry selected for the present study was a rectangular duct of 
sufficiently large aspect ratio for the flow along the mid-plane Co be considered 
as that developed between infinite parallel planes. Asymmetry was introduced 
by roughening one of the principal sides of the duct while the opposite surface 
was left smooth. Except for some preliminary tests, all measurements were made 
far enough downstream for the flow to have become fully developed. Thus all 
turbulence and mean flow profiles were functions only of the distance co-ordinate 
normal to the plates, denoted here by x2 or Z2 according to whether the smooth 
or the rough surface is taken as the co-ordinate origin. 

In an interim report (Hanjali6 & Launder 1968), the authors demonstrated 
that the mean velocity distribution between the plates exhibited three distinct 
regimes. In  the vicinity of each of the walls, the velocity profile displayed the 
uiiiversal variation appropriate to each surface. That is to say, near the smooth 
wall, the profile was in good accord with the logarithmic ‘law of the wall’ 

and correspondingly, near the rough wall, the variation was well described by 

u;il = ( 1 / ~ )  In (x2/e) -t- c‘. (1.2) 

In  the above equations, u+ stands for the local streamwise velocity U,, normal- 
ized by the friction velocity, (r,/p)&, and the subscripts S and R denote respec- 
tively whether the rough or smooth wall shear stress, rwB or rws, is used in the 
friction velocity. For the latter equation, e denotes a characteristic height of the 
roughness and c’ is a constant independent of Reynolds number. 

The conformity of the near-wall profiles with the above equations indicated 
that the flow there was essentially in local equilibrium and unaware of the 
dissimilar structure prevailing near the opposite walls. In  the central region of 
the channel, however, the mean flow displayed evidence of strong interaction 
between the two wall regions. A striking feature of this interaction was that 
statioiiary values of mean velocity gradient and zero shear stress were non- 
coincident - the plane of zero shear stress lying substantially nearer the smooth 
wall than the plane of maximum velocity. This same phenomenon has been 
observed by a niimber of other workers: in flow through annuli by Kjellstrom & 
Hedberg (1968) and Lawn (1970); in wall jets by Tailland & Mathieu (1967); 
and in an asyinmetric plane jet by Beguier (196q.t A common feature of all the 
above situations was that the flows in question were strongly asymmetric with 
respect to the surface of the zero shear stress. 

For a fully developed flow, the non-coincidence of the surfaces of zero shear 
stress and mean rate o f  strain means that, over a portion of the flow, the produc- 
tion of turbulent kinetic energy (which arises exclusively from the working of 

f A referee has pointed out that a further asymmetric flow which has received attention 
is th8.t where a gas flows between a wall and a moving liquid surface, e.g. Hanratty & 
Engen (1957). .4nother referee has drawn our attention to  a substantially earlier work on 
wall jets by Mathieu (1961) wherein the non-coincidence of the planes of zero stress and 
mean rate of strain was reported. 
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the Reynolds shear stresses against the mean velocity gradient) is negative; 
that is, locally there is a loss of turbulence energy to the mean motion. This 
phenomenon leads to particular interest in the turbulence energy balance in such 
flows and it is a subject to which attention is paid here. The measurements 
reported include profiles of all non-zero double- and triple-velocity correlations 
and, with only one exception, their one-dimensional spectra as well. From these 
data, representative length scales have been deduced for both the macro and 
micro structure of the turbulence and these are compared with the integral length 
scale deduced from two-point velocity correlations. 

2. Apparatus and instrumentation 
Apparatus 

The test section, shown schematically in figure 1, was formed of two 9.6 mm 
thick ' Duralumin ' plates mounted vertically with two aluminium channel- 
section spacers used as the closing top and bottom walls of the channel. One of 

Entry section \ 

'Test section 

/ 
Fan 

h_l coupling 

traversing probes 

FIGURE 1. Schematic view of wind tunnel. 

the side walls was roughened by sticking 3.18 mm square-sectioned silver steel 
ribs (transverse to the flow direction) spaced to give a pitch-to-height ratio of 
10: 1. Two channel widths have been considered, 28 and 54 mm measured 
between the smooth wall and the root of the ribs. The distance between the top 
and bottom walls was 0.3 m; the aspect ratio was thus about 12: 1 for the narrower 
duct and 6 :  1 for the wider. The total channel length was 3.70 m. 

Static pressure holes, 0.4 mm diameter, were inserted at 0-15 m intervals 
along the centre-line of each test plate; the static pressures were recorded on a 
T.E.M. multi-limb manometer. The downstream smooth-wall plate was fitted 
with access port-holes 76 mm in diameter (see figure 1) for examining the flow. 
Apart from preliminary readings to ascertain that the flow was fully developed, 
all measurements were taken a t  the downstream centre-line port-hole. 
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Air was drawn through the test section by a centrifugal fan driven by a 15 h.p. 
a.c. motor through a Vulcan fluid coupling thus enabling the flow rate to  be varied 
by a factor of about 5 .  

Instrumentation 

Mean velocity profiles across the test-section were measured by means of 
flattened-tip Pitot tubes with internal and external tip heights of 0.15 mm and 
0.45 mm respectively. The width of these tubes a t  the tip was about 2.5 mm. 
Different Pitot tubes were used for examining the flow near each of Che walls 
and these were suitiably shaped to  enable contact to be made with the surface 
in question. The probes gave consistent readings in the central region ofthe 
channel accessible to  both of them. 

I n  determining the mean velocity profiles, MacMillan’s (1954, 1956) low- 
Reynolds-number and shear displacement corrections were applied to  the Pitot 
tube measurements.? Moreover, it was supposed that the Pitot tube responded 
only to  the longitudinal component of turbulence. To determine the position of 
maximum velocity, a calibrated double Pitot tube was employed consisting of 
two flattened tipped tubes with centres 1 mm apart. 

Stanton and Preston tubes were used as the basis for determining the smooth- 
wall shear stress. The Preston tube was made from 0.8 mm O.D.  stainless-steel 
tubing and the Stanton tube from a Schick single-edged razor blade stuck to  the 
surface with Araldite. Both probes were mounted on aluminium disks 76 mm in 
diameter which fitted flush into the access port-holes in the smooth plate. The 
tubes were calibrated in fully developed flow between two smooth plates. 

Hot-wire measurements 

Standard Disa miniature hot-wire probes and constant-temperature anemo- 
meters were employed for the turbulence measurements. Two 55D01 anemo- 
meters, in conjunction with 55D10 linearizers, a 55D35 r.m.s. voltmeter and a 
Solartron d.c. digital voltmeter, were employed for this purpose. The longitudinal 
turbulence components were measured with the gold-plated boundary-layer- 
type probe 55F04, while for the measurements of the lateral components and 
turbulent shear stress, the miniature X-wire probe, type 55838, was used. 

Calibration of the hot wire was performed before and after each run in a nearby 
boundary-layer wind tunnel. A number of values of the linearizer exponent setking 
(the reciprocal of the exponent in the Collis & Williams (1959) law) were tried 
initially, ranging from 2.0 to  2.5; a value of 2.25 was finally adopted. The wires 
of the X-probe showed nearly equal sensitivities and the small discrepancy was 
reduced even further by adjustment to the zero velocity voltage and to the gain of 
one of the linearizers. No correction for possible wire interference was attempted. 

For the X-probes, the effective cooling velocity was assumed in the form pro- 
posed by Champagne, Sleicher & Wehrmass (1  967). The coefficient, representing 
the fraction of the velocity component parallel to  the wire that affects the wire 

t MacMillan’s proposals were for Pitot tubes of circular cross-section; thcir use for 
flattened tubes has, however, been found by Escudier (1967) to improve the imiversitlity 
of tho near-wall velocity profile. 
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cooling, was assigned the value of 0.23 for the considered velocity range and wire 
length: diameter ratio of 200: 1; this practice accords with the recommendations 
of Champagne et al. (1967), Kjellstrom & Hedberg (1968) and Lawn (1970). The 
two fluctuating signals were correlated by means of the Disa 55D75 and Disa 
55806 correlators. The latter was employed during the measurements of the 
triple velocity correlations, when the squaring circuit of the 55D75 correlator 
was utilized for squaring one of the fluctuating signals. The turbulent shear stress 
and the triple correlations of u1 and u2 were determined by measuring the 
correlation coefficients and the r.m.s. values of the relevant components. The 
measurements of the triple correlation ugu2 were performed by placing the 
X-wire probe in a plane bisecting the xl, x3 and x2, x3 planes. 

Of the quadruple correlations, only the flatness factors of the probability 
distribution of u1 and u2 were considered. These were evaluated indirectly from 
the r.m.s. of the fluctuating part of the squared signal (Hanjalid 1970). 

For the measurements of frequency spectra, two equal Briiel & Kjaer audio- 
frequency spectrometers, type 21 12, were employed. The spectrometers have a 
selective frequency range of 22-45 000 Hz, containing 33 filters with bandwidth 
of one-third octave and 11 filters with one octave bandwidth. 

The multiplication of the filtered fluctuating signals for the measurementis of 
the triple velocity spectra was performed by means of an analog multiplier with 
a flat frequency response up to 250 kHz ( -  3 db) and a phase error of 1 % a t  
3 kHz (Analog Devices type 421K). 

Several possible corrections t o  the hot-wire readings were considered, but 
none appeared to  have a significant effect. The maximum error due to  the neglect 
of the second-order terms in the non-linear hot-wire response equations was 
about 5.5 yo for the measurements with the X-probe in the xl, x2 plane a t  the 
nearest position to the rough wall. The error decreased rapidly with increasing 
distance from the wall; for the X-probe in the xl, x3 plane and for the normal 
probe the correction was even smaller. Frenkiel’s (1956) proposed correction of 
the turbulence intensities to  compensate for inadequate hot-wire response to  the 
small-scale motion was negligible everywhere except very close to the smooth 
wall where it amounted to about 4 yo. 

Another form of wire-length correction for spectra measurements proposed 
by Wyngaard (1968) suggested that, at the highest frequency measured, the 
normal-wire data may have been in error by 16 yo. It would appear that for the 
cross-wire measurements the error may have been somewhat larger; no correc- 
tions have been applied to  the data, however, for our wire separation did not 
correspond to  either of the cases examined by Wyngaard. 

- 

Traversing mechanism 

The sensing probes were propelled between the test plates by means of a travers- 
ing instrument. A 50mm micrometer was mounted on two steel guide rods 
cemented with Araldite into a 76 mm aluminium disk; the disk itself was clamped 
flush with the test plate in the access port-holes. For the measurements of space 
Correlations employing two probes, a similar design of traversing instrument 
was used but with two pairs of guide rods and two micrometers. 

20 F L M  51 
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A simple electric circuit enabled the micrometer reading, when the probe 
touched the wall, to  be accurately determined. When assembled in the test 
section the probes were not visible and so, to  enable accurate positioning of the 
hot-wire probes, a dummy test plate, made from the same plate as the channel 
walls, was employed. At several micrometer readings the actual distances of the 
hot wire from the dummy plate were measured with a travelling microscope. 
Moreover, following the proposals of Zaric (1967) zero velocity voltage readings 
of the hot wire were recorded as a function of the distance from the dummy wall, 
yielding an exponential curve which served then as a reference for the actual 
positioning of the hot-wire probe when placed in the channel. The latter method 
served as a check on possible misalignment of the disk’s inner surface with the 
surface of the channel wall in comparison with the surface of the dummy plate. 
The correction never exceeded 0.05 mm. 

Preliminary tests 

The apparatus was first assembled with two smooth test plates 1.85m long 
25 mm apart. For a number of Reynolds numbers, measurements of the mean 
velocity profile were made with the Pitot tubes. The profiles were plotted semi- 
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FIGURE 2. Friction factor in plane symmetric channel: 0, from equation (1.1); 0 ,  from 
measured static pressure gradient. 

logarithmically and the value of the wall shear stress deduced in the usual way 
from the application of equation (1.1) t o  the linear region of the profile. Two 
pairs of values of the constants K and c were used: K = 0.41, c = 5.0 (Coles’s 
(1962) recommendation) and K = 0.42, c = 5.45 (suggested by Pate1 (1965)). 
Over the range of Reynolds numbers used here, the two sets of constants gave 
rise to  differences in the deduced values of rw of only about 1 yo. 

A more extensive set of readings was taken in which only the maximum 
velocity, the static pressure gradient and the Stanton- and Preston-tube readings 
were recorded. The wall shear stress was deduced from the linear portion of the 
static pressure distribution; then, with the maximum channel velocity measured, 
the skin-friction coefficients could be deduced. The skin-friction coefficients 
deduced from both the static pressure gradient and equation (1.1) are plotted as a 
function of Reynolds number in figure 2. The values deduced by the two methods 
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are seen to be in satisfactory agreement. Thus it was deduced that the apparatus 
was functioning satisfactorily. 

A least-mean-square fit t o  the Stanton-tube readings yielded the following 
correlation : r$) = 0.326( APstpd2 ru2 ) 0.76 , 

where A Pst refers to  the dynamic pressure recorded by the Stanton tube and 
where d is the distance from the aluminium disk to  the cutting edge of the blades. 
This correlation was found to be consistently reproducible. The shear stress of 
the smooth wall in the rough-smooth channel obtained from this equation was 
always within 2 % of the values indicated by equation (1.1) and agreed within 
3 yo with the values obtained from Preston-tube data employing the Head & 
Rechenberg (1962) correlation. The Stanton-tube values for the smooth wall 
shear stress have been adopted throughout this work as the standard ones. 

3. Mean flow characteristics 
Figure 3 shows the distribution of mean velocity between the rough-smooth 

parallel planes for three values of Reynolds number, where Re is based upon the 
maximum velocity and half the distance between the plates. The profiles are 
strongly asymmetric and are appreciably dependent upon Reynolds number. 
This Reynolds-number influence may be attributed to  the fact that  the ratio 
rR: rs increases approximately as Although, as figure 3 reveals, the surfaces 
of zero shear stress and maximum velocity do not coincide, one would expect a 
shift in one of them to be accompanied by a similar displacement of the other. 

The mean velocity profiles near the smooth surface are plotted in figure 4 in 
universal co-ordinates; the shear stress used in determining us‘ and xi is that  
found from the Stanton-tube measurements. If one discounts the scatter in the 
data for x2+ .c 50 (which may reasonably be attributed t o  uncertainties in 
estimating the displacement correction of the Pitot tube), it is evident that, for 
an appreciable region near the wall, the mean velocity profile is universal in 
character, there being no detectable influences either of Reynolds number or of 
the rough surface opposite. The findings, with respect to  the influence of 
Reynolds number, do not accord with those of Clark (1968) and Comte-Bellot 
(1965) in smooth channels. These workers noted appreciable changes in the 
additive constant of the logarithmic profile with Reynolds number though, as 
figure 4 shows, the trends were opposite in the two sets of experiments. Of the 
plane-channel data, the present measurements agree most closely with Comte- 
Bellot’s profile at a Reynolds number of 120000; Patel’s (1965) recommended 
logarithmic law, however, provides an  even better fit. Further from the surface, 
as the influence of the rough wall progressively increases, the mean velocity profile 
departs below the logarithmic profile in contrast to  the departure above the 
logarithmic profile found in a symmetric smooth channel. 

The velocity profiles near the rough wall are shown in figure 5 for three 
Reynolds numbers, the normalizing scales being the rough-wall friction velocity 
and the rib height, e .  The left-hand graph reveals that  there is no detectable 

20-2 
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FIGURE 3. Mean velocity profiles in 54 mm asymmetric channel. 0 ,  Re = 18 700; 
0, Re = 36 400; 0, Re = 56 000. 

10 100 1000 10 000 

FIGURE 4. Smooth-wall velocity profiles in universal co-ordinates, 54 mm channel. 
-, Pate1 (1965); .-., Clark (1968): (a) Re = 68000, (b )  Re = 14700; -----, 
Comto-Bellot (1965): (c) Re = 570000, (d )  Re = 120000. 
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influence of Reynolds number and, over a region extending from about 5 to  8 
rib heights, the profiles display a logarithmic variation with the same slope as 
the smooth-wall region (i.e. K = 0.42). Perry & Joubert (1963) found, for surfaces 
roughened with discrete ribs, that the effective origin for Z2 may not coincide 
with the root of the rib. The same conclusion emerges from the present work; 
for as figure 5 ( b )  displays, if the origin is taken as 0.4 rib heights below the root 
of the rib, all the profiles collapse onto the logarithmic line a t  distances greater 
than two rib heights from this new origin. The additive constant in the logarith- 
mic law, 3.2, is in reasonable agreement with the data of Wilkie et al. (1967) for a 
similar type of roughness. 

L I I 1 I I I 1 1 1 1  I I I 1 I I I 1 1 1 1  I 
(b)  

8 

ts 

' 6  

4 

0.5 1.0 2.0 4.0 6.0 10 

52Ie Gcb 
FIGURE 5. Rough-wall velocity profiles, 54 mm channel. 

Figure 3 indicated that the planes of maximum velocity and zero shear stress 
axe not coincident in this asymmetric channel flow. Figure 6, which provides 
results for the 54 and 28 mm channels, permits a more detailed appraisal of this 
phenomenon. The position of zero stress, yo, lies significantly closer to the smooth 
surface than that of maximum velocity, ym, the discrepancy being larger for the 
28 mm channel where the ratio e :D is greater. Both the maximum-velocity and 
zero-stress positions shift progressively towards the smooth surface as the 
Reynolds number is increased. The ratio yo: ym does not, however, vary appreci- 
ably for either duct over the range of these experiments. 

I n  summary, close to  the smooth wall and over a considerable region near the 
rough wall, the mean velocity field shows evidence of local equilibrium; there 
the mean velocity profiles are universal when normalized with length and velocity 
scales appropriate to  the region in question. Within a central region of the channel, 
however, the local flow structure is markedly influenced by the dissimilar 
boundaries. The sections which follow provide a detailed examination of the 
turbulence single-point double and triple correlations within these flow regimes. 
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FIGURE 6. Variation of ym and yo with Reynolds number. 

4. Profiles of single-point turbulence correlations 
The distribution of all three components of the r.m.s. turbulence intensity are 

shown in figure 7 for three Reynolds numbers. The axes are normalized with the 
rough-wall friction velocity and the distance from the rough surface to the plane 
of zero shear stress, go. It is noted that the profiles shown for iil are those obtained 
from a cross-wire placed in the xl, x3 plane. Other iil profiles have, however, been 
taken with a normal wire (for which one set of data is included in figure 7)  and 
with a cross-wire placed in the xl, x2 plane; all the results were consistent within 
a maximum experimental scatter of 7 %. The cross-wire data are selected for 
presentation here because they cover a greater proportion of the channel width 
than was accessible t o  the bent-pronged normal-wire probe. 

Prom the rough surface to almost the plane of zero shear stress, the profiles 
of all three turbulence intensity components show no discernible variation with 
Reynolds number. I n  view of the mean flow findings, the result accords with 
expectations. Some influence of the unequal boundary conditions may be 
detected, however, since the minimum value of G3/C2 may be seen to occur a t  a 
value of S2/go of approximately 0.75, whereas in a symmetric channel the 
minimum is at the plane of zero shear stress. 

Closer to  the smooth wall, for S2/go > 0.95, the influence of Reynolds number 
becomes apparent, the intensities increasing as Re decreases. This behaviour is 
expected since, as the smooth surface is approached, the flow field becomes 
progressively under the influence of the smooth-wall scales uTs and V I U , ~ .  Since 
the ratio uTR: uTs diminishes with a decrease in Reynolds number, this will reflect 
in an increase in Gi/uTR if iii/uTs is independent of Reynolds number. 

A noteworthy feature of the data is that  the minima of the turbulence inten- 
sities do not coincide with yo. The minimum values of Gl and G, occur a t  approxi- 
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mately 0.8 yo while, over the portion of the ducb covered in these measurements, 
u2 diminishes uniformly as the smooth wall is approached. Consideration of the 
4, profile in the immediate vicinity of the surface is deferred to the appendix, 
where critical comparison is made with other workers’ data. Suffice it to mention 
here that we conclude that the ii, profile in our experiments is not discernibly 
different from that in a smooth symmetric channel. 

1.5 

0.5 

0.2 ’ 0.4 0.6 0.8 1 .o 1.2 

Z,I&l 
FIGURE 7. Distribution of turbulence intensities. 

Figure 8 compares the measured variation of the kinematic turbulent shear 
stress, w, across the channel with that deduced from the Stanton tube and 
static-pressure-gradient readings (indicated by the solid line). At distances 
greater than about four rib heights from the rough wall, the measured profiles 
display good linearity with a slope in accord with that implied by the static 
pressure gradient.? The data for the highest and lowest Reynolds number falls 
almost exactly on the line; those for the intermediate Reynolds number lie 
slightly to the right of it. 

Figure 9 displays the measured variation of the shear correlation coeEcient 
across the channel. Over a considerable region near the rough wall (0.1 < %Jij,, 
< 0.65) the correlation is practically constant and, as would be expected, there 
is no detectable variation with Reynolds number. The measured values for this 
region lie between 0.4 and 0.43 in agreement with data in smooth channels. Near 
the smooth wall there is no appreciabIe region where the correlation coefficient 
is uniform though the maximum value reached is again approximately 0.4. 

t It is probable that the z1 dependence of the flow in the immediate neighbourhood of 
profile the ribbed surface is responsible for much of the indicated non-linearity of the 

there. 
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The orientation of one of the principal-stress axes is illustrated in figure 10 
where the angle olsl is calculated from the expression: 

I I I 
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The angles of the stress axes vary considerably except over the region 
0.2 < Z2/g0 < 0.8, where they are approximately 17' and - 73'; these values are 
close t o  those found in the outer region of other wall flows. For comparison, it 
is noted that the principal axes of the mean rate of strain are orientated at 
_+45"; that is, the angles are constant across the channel except for an inter- 
change between the compression and stretching axes at  x2 = ym. 
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FIGURE 8. Direct measurements of G. 
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The triple velocity correlations, measured at  two Reynolds numbers, are 
presented in figures 11, 12 and 13, the normalizing scales being u;R and go. The 
three energy diffusion components shown in figure 11 exhibit a sign reversal at 
a value of Z2/y",, between 1.0 and 1.1.  This is a characteristic of all velocity 
correlations that contain an uneven power of the u2 component and is comparable 
with the change of sign of T2 near the same location. At approximately the 
same position the correlation ulut, which represents the diffusion of shear stress, 
exhibits a minimum value (figure 12) .  
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A further change of sign of the correlations u;u2, uz and ulug is inLA,,jated near 

the rough wall; the trend is especially pronounced for the last of these. This 
behaviour (which would imply a diffusional transport of a turbulent quantity 
up the gradient of that quantity) is consistent with the shedding of large eddies 
(with axis in the x3 direction) from the ribs on the rough wall. That the ugu2 
component does not show a sign reversal lends some support t o  this argument, 
though against this must be set the fact that the energy spectra, presented in 
$ 5 )  exhibit no sign of a preferred frequency. It seems probable that these 
measurements in the vicinity of the roughness elements are not precise enough 
for a definite conclusion to be drawn. 

The diffusion profiles shown in figure 11 ( b )  and (c) and in figure 12 are notice- 
ably different for the two Reynolds numbers. In view of the insensitivity to 
Reynolds number of the double correlations and the u ~ u z  correlation of 11 (a) ,  
the difference is almost certainly attributable to experimental error. It is 
pertinent to add that ug u2 was obtained indirectly by measuring the correlation 
(uz+u3)3 (which in a one- or two-dimensional flow is equal to ug+3ugu2) and 
subtracting from it the directly measured value of 3. Now (u2+u3)3 was 
essentially independent of Reynolds number and this is why the apparent effect 
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The distribution of the skewness and flatness factors for the x, and x2 compo- 
nents is shown in figure 14. The most striking feature of the skewness profiles is 
that for 0.15 < x2/D < 0.8, S, and S,  vary in a closely parallel manner, with S, 
displaying somewhat higher (negative) values of skewness. This behaviour 
differs markedly from that measured by Comte-Bellot (1965) in a plane smooth 
channel. In her experiments, by virtue of the symmetric boundary conditions, 
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S,  was symmetric about the mid-plane, attaining its largest magnitude at the 
centre-line; whereas S, was antisymmetric, falling to zero at  the centre-line. 
(In her experiments, the centre-plane was of course the plane of zero shear 
stress.) In  comparison, the present data show that the S, skewness factor falls 
t o  zero to the left (i.e. on the smooth-surface side) of the plane of zero shear stress 
whereas the magnitude of S,  attains its maximum value to the right of yo. This 
contrasting behaviour suggests that the S, and S,  correlations may arise from 
eddies of rather dissimilar structure. 
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FIGURE 14. Flatness and skewness factors. 

5. One-dimensional spectra 
The spectral measurements were made a t  a single Reynolds number, 

Re = 36500, a t  a number of positions within the channel chosen to  cover the 
flow regions of interest. 

The spectra o f 2  were measured in three ways: with a normal wire, and with 
cross-wires in the xl, x2 and xl, x3 planes. The resultant normalized profiles q511 
are shown in figure 15, wherein the abscissa has been successively offset by one 
decade for each position. The normalized spectral density q5ij  is defined as 

q5ijkD) = C&D)/UiUj, (5.1) 
- 

where Fij is the unnormalized spectra of uiuj, so that 

- 
J & ( K ~ D )  ~ ( K ~ D )  = u.iuj 
0 

The data obtained from the three sets of measurements are in close accord except 
at xz/D = 0.5, where the spectral profile measured with the normal wire exhibits 
rather lower values a t  high wave-numbers. 

At the position closest to  the smooth wall the spectra exhibit a K ; ~  dependence 
over rather more than one decade, whereas for values of xzlD > 0.2 a K$ 

variation is evident, again over rather more than a decade of the one-dimensional 
wave-number K ~ ;  these findings agree with those of measurements of Comte- 
Bellot (1  965) and others. The corresponding normalized spectra #z2, q533 and #lz 
are shown in figures 16-18. From these figures it is evident that the longitudinal 
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scale of the turbulence increases initially with distance from the smooth wall 
and reaches a maximum value near xz/D = 0.5. No appreciable region of these 
spectra exhibits a '-%' variation with wave-number; again, this result and the 
relative shape of the profiles are in agreement with spectra measurements in 
smooth channels and pipes (Comte-Bellot 1965, Lawn 1970). IC is noted that 
figure 18 does not include a profile of the shear stress spectra near the plane of 
zero shear stress. The reason is that the shear stress in this region exhibits 
different signs in different regions of wave-number space; further discussion 
of this phenomenon is given below. 
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s 
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1 0 - 4  
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FIGURE 15. Normalized spectra of 2. 

I n  order to provide comparison of the relative distributions with wave-number 
of the normal and shear stresses, the unnormalized spectral densities, qj(c., ), 
are plotted in figure 19 for positions near the smooth wall and a t  the mid-plane. 
The dashed line on the figure represents the variation of F z 2 ( ~ 1 )  and 43(~1) 
which is implied by the isotropic relationship 

F2z (K1) = G3 (K1) = HFll (K1) - KI @,I (K1 )/W. (5.2) 

At high wave-numbers, the measured spectra display close agreement with 
equation (5.2) particularly for the mid-channel position. As would be expected, 
the shear stress falls off more rapidly with wave-number than do the normal 
stresses. The value of FI2 is still appreciable, however, where the and F33 
components follow closely the isotropic relation, equation (5.2). 

The behaviour of the normal stress spectra a t  high wave-numbers may best 
be seen from figure 20, which plots all three components normalized with respecb 
to the Kolmogorov length and velocity scales 7 and v ,  where 7 = us e-f, u = vf ef, 
and 6 is the dissipation rate of turbulence kinetic energy, evaluated from closure 
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of the turbulence energy equation. Although the experimental scatter is appreci- 
able, considering the uncertainties in making high-frequency spectral measure- 
ments, the graphs display reasonably well a universal behaviour of the spectra 
a t  high wave-numbers. Figures 19 and 20 both suggest that, in many respects, 
the micro structure of the turbulence may be treated as isotropic. 

1 10 10' loz 103 

K1 D 
FIGURE 16. Normalized spectra of 2. 

The one-dimensional spectrum of the shear correlation coefficient, defined as 
R 1 2 ( q )  2 F12(~l)/[Fll(~1)F22(~1)]~, is plotted in figure 21 for various positions 
in the channel. A semi-logarithmic scale is adopted in order t o  show the actual 
sign of the correlation spectra. Over the portion of the channel closest t o  the 
rough wall the correlation coefficient displays a monotonic and rather rapid 
decay with increasing wave-number. (The measured increase of R1, ( K ~ )  for 
K ~ D  > 100 is almost certainly a spurious result, in all probability attributable 
to  instrument noise.?) The high values of the coefficient at low wave-numbers 

spatial separation of the wires or by the two spectrometers not being phase matched. 
t A referee has suggested that the measured behaviour could be caused either by the 
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(greater than 0.8 for xzlD = 0.85) are indicative of a large well-organized eddy 
structure induced by the nearby ribbed surface. Over the half of the channel 
nearer the smooth surface the correlations are flatter with a maximum value not 
exceeding 0.5. 

Of particular interest is the spectrum a t  xz/D = 0.146 close to the plane of 
zero shear stress. The shear correlation changes sign twice indicating that 
moderate wave-number eddies have a sign opposite t o  those of larger and smaller 
eddies. I n  view of this possibly surprising result, it is noted that the spectra a t  
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FIGURE 17. Normalized spectra of 2. 

xz/D equal to 0.108 and 0.087 (two sets of measurements are plotted for the 
latter position) each display a variation which is consistent with the measured 
profile at  x2/D = 0-146; namely, a shift towards the sign of the correlation 
coefficient in the rough-wall region for values of K ~ D  between 1.5 and 15. The 
phenomenon appears t o  be caused by a substantial migration of eddies within 
the above band of wave-numbers from their origin in the rough-wall region to 
the vicinity of the smooth wall. 
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Measurements of the shear correlation coefficient in homogeneous shear flow 
(Champagne et al. 1970) and in pipe flow (Lawn 1970) display no such change of 
sign. The behaviour measured in the present channel may thus be attributed to  
the strongly asymmetric boundary conditions of the flow. Finally, it is recorded 
that a t  xz/D = 0.047 (xi z 50) the correlation spectrum appears t o  be quite 
unaffected by the structure of the flow in the rough-wall region. 
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FIGURE 18. Normalized spectra of turbulent shear stress. 

Figure 22 presents one-point spectra of the triple correlations of the velocities 
u1 and u2 measured a t  three positions in the channel. The data are presented in 
the form of normalized spectral densit.ies 

(5.3) 

where i, j and I take values 1 or 2 in five different permutations. The spectra 
and $22,2 are two of the three components of the general term g5iz,i the 

divergence of which represents the spectral density of the net turbulent diffusion 
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of kinetic energy in direction x2.  This spectral form, it is noted, provides informa- 
tion about the energy diffusion of eddies of the considered wave-number. The 
alternative spectral grouping, q5ic2, may be shown to represent the spectral 
diffusion of 2 for which eddies of wave-number K~ are responsible (Bradshaw & 
Ferriss 1965). Correspondingly, q512,2 represents the diffusion of shear stress by 
eddies of the considered wave-number whereas the shear-stress diffusion of 
eddies of wave-number K~ is given by $(&2+q522,1). In  figure 22, the latter 
grouping which involves the arithmetic mean of two q5’s is shown by a broken line. 

~ 

10’ 1 o2 103 104 10‘ 10: 103 104 

K1 (m-l) K1 fm-l) 

FIGURE 19. Comparison of unnormalized power spectra. 0, Fl1; a, F22; x , F33; 0, PI*. 

A6 x2/D = 0.047, the position closest to the smooth wall, there is no significant 
distinction between the various spectral forms. Further from the wall, however, 
a difference emerges which appears worthy of comment: namely, that the spectra 
are grouped into two pairs q5ii,, and # i i , 2 .  The spectral density of the former 
pair falls off at  considerably lower wave-numbers than the latter. The difference 
in shape between these two pairs of spectra is qualitatively similar to the differ- 
ence between the q411 and & spectra of kinetic energy (figures 15 and 16), 
suggesting that the turbulent diffusion velocities of a particular wave-number, 
U ~ ( K ~ )  and U ~ ( K ~ ) ,  exert a dominating effect upon the shape of diffusion spectra 
of the triple correlations. A consequence of this pairing is that eddies responsible 
for the diffusion of shear stress (the q512,2 spectrum) are of a predominantly 
higher wave-number than the shear stress bearing eddies which are diffused (the 
spectrum of &(q512,2+ #,,,,) denoted by the broken line). 

ZI FLM 51 
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FIGURE 20. Spectra of normal stress components normalized with Kolmogorov scales. 

6. Length scales of the turbulent motion 
At a single Reynolds number, Re = 36500, measurements were made of the 

two-point lateral correlation coefficient of the u1 velocity component, defined as 

The measurements were obtained by means of two gold-plated hot wires aligned 
normal to  the flow, one of which could be moved relative to  the other in the xz 
direction. Measurements of the correlation coefficient were made at a dozen 
positions across the channel but for clarity only data for half of these are presented 
in figure 23.7 Measurements at x2/D = 0.42 were made on two separate occasions 
and, as figure 23 shows, the two sets of data exhibit satisfactory consistency. 

t More extensive data are provided by Hanjali6 (1970). 
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It is noted first that the space correlations for the three central positions in 
the channel are appreciably asymmetric, an expected result in view of the strong 
lateral inhomogeneity of the flow. Moreover, it is seen that the correlation 
coefficient becomes negative at sufficiently large values of r2.  Perhaps the most 
interesting feature to  emerge is that for values of xz/D between 0.2 and 0.5 the 
correlation decreases linearly or with small convex curvabure with increasing 
separation between the wires. This finding, which is in marked contrast to  the 
concave curvature displayed in a smooth channel (Comte-Bellot 19651, is 
indicative of a pattern of eddies of rather uniform size.? Closer to  the smooth 
wall, the correlation coefficients exhibit a behaviour similar t o  those measured 
in a smooth channel; in this region, turbulence generated by the influence of the 
rough wall is suppressed by the structure originated at; the smooth wall. 
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FIGURE 23. Lateral space correlation coefficient, R,,(O, r2, 0). 

Figure 24 shows the profile of lateral integral scale, L,,,, obtained by integra- 
tion of R,, (0, rz,O): m 

LZ11 = 1 ~ , l ( O > ~ Z > O )  drz. (6.2) 
--m 

Unlike the profiles of turbulent and mean flow velocities L,,, is nearly symmetric. 
The overall shape is not unlike those in symmetric ducts though the peak level 
attained is appreciably higher than in a plane symmetric channel. The result 
provides further evidence that go (the distance from the rough wall to the plane 
of zero shear stress) rather than &D may be taken as the effective half-width of 
the channel wall. 

Estimates of the longitudinal integral scales, shown in figure 25, were made 
from the low wave-number asymptote of Fii(~,) by means of the Pourier 
transformation 

t See Townsend (1956, p. 15). 



Pully developed asyrnrnetricJlow in a plane channel 325 

The difficulty of measuring the spectra at very low wave-numbers and the 
uncertainty of the applicability of Taylor's hypothesis conspire t o  place the 
absolute accuracy of these data in doubt. Any errors may, however, be expected 
to be systematic and the curves may be taken to indicate the relative levels of 
the length scales. 
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Like the lateral integral scale, the profile of Lll, appears to be virtually 
symmetric, its shape being similar to, but with a level about twice that of, L211. 
The scales L1,, and L,,, are much smaller (in agreement with Comte-Bellot's 
symmetric-channel data). The former is appreciably skewed towards the rough 
wall whereas, in contrast, L1,, attains its maximum value close to  the plane of 
zero shear stress. Finally, L1,, is strongly asymmetric, similar in shape to  L12,. 
As the plane of zero shear stress is approached, the value of this length scale will 
probably approach 5 a3 because the zero-wave-number asymptote is unlikely 
to  vanish where the total correlation is zero (cf. figure 21); for this reason the 
line joining the data in the vicinity of yo has been marked with a broken line. 
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FIGURE 26. Profile of dissipation length scale. 

The profile of the scalar dissipation length scale L, = IcQle, is shown in figure 26, 
wherein Ic denotes the turbulence kinetic energy and the dissipation rate has 
been obtained as the closing term in the energy-balance equation ( 3  7 ) .  There is 
a certain amount of scatter in the data but the profiles for the two Reynolds 
numbers show reasonable agreement; both, it is noted, exhibit a point of 
inflexion near x2/D = 0.2. I n  pipe flow, L, reaches its maximum value at  about 
mid-radius and diminishes towards the centre-line. Figure 27 indicates that, near 
the two walls, the dissipation length scale follows a similar behaviour in both the 
rough- and smooth-wall regions. Where these dissimilar wall structures interact, 
the distribution of L, adjusts to match the scales in the two regions thus leading 
to  the inflexion point. 

The longitudinal components of the Taylor microscale, A,$$ , are presented in 
figure 28. The data were evaluated from the second moment of the energy spectra 
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The scales are approximately symmetric with respect to the mid-plane of the 
channel though hlll is appreciably larger than is implied by the isotropic 
relationship 

Perhaps, as a referee has suggested, this discrepancy is attributable to  the finite- 
wire-length effects for which Wyngaard’s (1968) correction attempts to 
compensate. 

For comparison, the Kolmogorov microscale 7, representative of the size of 
the dissipative eddies, is also shown in figure 28, the ordinate being enlarged by 
a factor of two for clarity. The figure shows that the maximum value of 7 is only 
about one-sixth that of hill, indicating that the Taylor microscale does not 
provide a very precise indication of the scale of the dissipative motions. 

(6.4) 4 1 1  = h122J2 = h13342. 

7. Energy balance 

turbulent kinetic energy may be written 
For fully developed plane-channel flow the equation for the conservation of 

where p refers to  the instantaneous value of pressure fluctuations. The equation 
expresses the fact that  the energy supply to  turbulence from the mean motion 
by the action of shear stress (the generation term) and by turbulent diffusion 
(owing to  the velocity and pressure fluctuations) is equal to  the rate a t  which 
the turbulent motion dissipates the energy. 

I n  the present experiments the generation term and the velocity-diffusion term 
have been measured directly. The measurement of the pressure-diffusion term, 
which poses severe experimental difficulties (which, to  the authors’ knowledge, 
have not yet been overcome) was not attempted. There is some evidence to 
suggest, however, that  it may be negligibly small except in the immediate 
vicinity of a wall. With this term neglected, therefore, equation (7.1) has been 
employed to  determine the dissipation rate as the closing term. The resultant 
energy balance is displayed in figure 29. The figure shows that near both walls 
the diffusion term is far outweighed by the generation and dissipation terms. 
I n  the neighbourhood of the plane of zero shear stress, however, it is the large 
diffusional influx of energy which makes good the loss by dissipation and by the 
‘generation ’ term becoming negative. 

While the magnitude of this energy transfer from the turbulent to  the mean 
motion is not significant compared with those of the diffusion and dissipation 
terms, the phenomenon itself is perhaps of sufficient interest to  merit further 
scrutiny. It is clear from the profile of the shear stress spectra a t  x2/D = 0.146 
(figure 21) that  i t  is the moderate wave-number motions, 1-5 < K ~ D  < 15, 
with which the negative generation is mainly associated. Moreover, from 
figure 22, it emerges that much of the diffusion of energy and shear stress is 
likewise associated with the same range of wave-numbers. The following thus 
seems to be a consistent description of the processes which conspire to produce a 
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region of negative energy generation. In  the vicinity of each wall is established 
a flow structure characteristic of the nearby surface. In the region where these 
two dissimilar flow structures interact, there is a substantid diffusive transport 
of energy and shear stress from the rough- to the smooth-wall region. The 
diffused shear stress bears a sign opposite from that locally produced and over 
a limited region the total 'generation ' is consequently negative. 

To provide some independent check on the values of the dissipation term 
estimated above, the term was also evaluated from the 2 energy spectra by the 
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FIGURE 29. Turbulent kinetic energy balance. 
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method proposed by Bradshaw (1969). A tangent with -5 slope was fitted and 
the dissipation was then calculated from the relation 

B = [pll (K1 )K$O'5 11%. (7.2) 

I n  figure 30 the results are compared with the values of e estimated from the 
energy equation above. A deviation between the two estimates of about 20% 
appears a t  xz/D = 0.5 but in other regions of the channel the agreement is 
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FIGURE 30. Estimates of turbulence energy dissipation rate. 
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A third estimate of dissipation was obtained by calculating three of the nine 
dissipative terms through the Taylor microscale, hlzi. The chain line on figure 30 
represents the dissipation calculated from the isotropic relationship 

E = 3v [(y + - + - .  ( 4 , ) 2  ( % ) Z ]  

4 1 1  h12z 4 3 3  
(7 -3 )  

Although the resultant profile of dissipation exhibits a similar shape to that 
obtained by closure of the turbulence energy equation, the magnitude of the 
former is only about one half that  of the latter. The result suggests that  the 
dissipative motions do not possess in all respects the character of isotropic 
turbulence. This finding is consistent with the measurements of Klebanoff (1955) 
and Laufer (1954). 
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8. Summarizing remarks 
The discussion in the preceding sections has examined in turn various proper- 

ties of the mean and turbulent flow in an asymmetric plane channel. In  conclusion 
it may be helpful to consider the structure which collectively emerges from the 
data of the three flow regimes in the channel. 

First, in the rough-wall region, extending from the rough surface to approxi- 
mately the mid-plane of the channel, the flow structure appears to be determined 
solely by the nature of the rough-wall boundary conditions. This conclusion is 
supported by the universal character of the mean velocity profiles (figure 5 )  and 
by the uniform value of the shear correlation coefficient (figure 9 ) .  None of the 
profiles in this region exhibited detectable influences of Reynolds number. 
Within about three rib heights of the surface the turbulence structure showed 
signs of being affected by the discrete roughness elements: the shear correlation 
coefficient exhibited values as high as 0.8 at  low wave-number and the turbulent 
diffusive flux of energy (neglecting pressure diffusion) was up the energy gradient. 
Both these results suggest the presence of a better co-ordinated eddy structure 
than is present near a smooth wall. 

The present investigation and the earlier study by the authors provide a 
variety of data which support the conclusion that near the smooth surface, too, 
there is likewise a region of local equilibrium where neither the mean nor the 
turbulent structure of the flow appears affected by the adjacent rough-wall 
structure. The result is perhaps chiefly of interest because of the questions it 
raises concerning the flow in a smooth channel. For example, we have found 
that the mean velocity profile for x$ < 150 is the same irrespective of whether 
the roughened opposite wall of the channel is 28 mm or 54 mm away; and that 
the measured profiles accord with Patel’s (1965) proposal for external boundary 
layers. Yet, the profiles are appreciably different from the measurements of 
Comte-Bellot (1965) in a smooth channel and even more substantially different 
from those of Clark (1968) (figure 4 ) .  It is probably significant that the data of 

normalized with the smooth-wall friction velocity (see appendix) should show 
the same relative discrepancies among the three investigations (i.e. Clark’s is the 
highest, Comte Bellot’s the next and the present author’s data the lowest of the 
three, but in good agreement with the data of Van Thinh ( 1 9 6 7 ) ) .  This result 
suggests that errors in the determination of the smooth-wall shear stress may be 
a major cause of the variations among the data. 

The region where the smooth- and the rough-wall structures interact is where 
the chief emphasis of the present investigation has been placed. Evidence of this 
interaction is provided by the profiles of mean velocity, turbulent stresses and 
triple correlations. Typically, in the 54 mm channel, the mean velocity gradient 
vanished at  1 . 2 5 ~ ~ ’  whereas the turbulence energy reached its minimum 
at about 0.75y0, which was also the location at which the diffusion of turbu- 
lence energy became zero. In  the energy-balance equation, this region was 
distinguished by the high net diffusional flux of energy from the rough-wall 
region. The diffused eddies bear a shear stress of opposite sign from those 
originating near the smooth wall, however, and over most of the region their 
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interaction with the mean flow tends to diminish the prevailing level of turbulence 
energy. 

Apart from the double sign reversal in the spectrum of shear stress, near yo, 
the spectral profiles of the shear and normal stresses were not appreciably 
dissimilar from those measured in the central region of a plane channel. I n  
particular, Bradshaw’s proposal for determining the energy dissipation rate 
from the inertial subrange of the F,’~(K) spectrum gave values of B which were 
generally consistent with those found from the energy-balance equation with 
pressure-diffusion terms neglected. Moreover, despite the strong overall aniso- 
tropy of the flow, there was much evidence to suggest that  the dissipative 
motions were isotropic. 

I n  general, both the macro- and microturbulent length scales exhibit much 
less asymmetry with respect to  the mid-plane than do the turbulence velocity 
correlations. The lateral integral scale L,,,, however, attains an appreciably 
larger proportion of the channel width than in a smooth channel. Thus, go, the 
width of the rough-wall originated flow, appears to determine the lateral dimen- 
sions of the largest-scale motions. By comparison, the longitudinal integral scales 
are comparable in magnitude t o  those in a smooth channel or in a pipe. 

The research reported here has been sponsored by the Berkeley Nuclear Labora- 
tories of the CEGB. We wish to  acknowledge both this financial support and the 
sustained interest in the research by the Board’s staff. Our colleagues a t  Imperial 
College, Mr P. Bradshaw and Dr J. H. Whitelaw, have substantially aided the 
research through discussions and through the loan of many electronic instruments. 

Appendix. The streamwise turbulence intensity near a smooth wall 
The profile of streamwise turbulence intensity in the immediate neighbourhood 

of a smooth wall has been the subject of a number of experimental studies. Here 
we limit attention to  flows in a plane channel and provide comparison between 
our own data in a rough-smooth channel with those of other workers in a 
symmetric configuration. 

The profiles of u1IuTS are shown in figure 31 as a function of xi. The first 
impression to  emerge is that  of the very large variation among the measurements; 
for example, the peak value of ul/uTs in Clark’s channel is some 80 yo higher than 
Laufer’s (1951) in his 25 mm channel. Let us, however, look for consistencies 
among the smooth-channel data and the present measurements before consider- 
ing the differences. All the profiles display similar shapes with the maximum 
intensity occurring a t  a value of x$ of between 15 and 20; this is within the range 
indicated by measurements in pipe flow (Laufer 1954; Coantic 1967) and in 
external wall boundary layers (Klebanoff 1955). Moreover, focusing attention 
now 011 Comte-Bellot’s and the authors’ (1968) data, a consistent effect of 
Reynolds number is displayed. As the Reynolds number is increased, in a particu- 
lar channel, the peak value of Gllu,s decreases. The decay with x$ is more 
gradual however and consequently for xi > 70 the normalized turbulence 
intensity increases slowly with Reynolds number. 
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The major discrepancy among the considered data is the magnitude of the turbu- 
lence intensities in each investigation. The early data of Laufer had suggested 
that the width of the channel itself might affect the peak level of turbulence 
intensity. However, the more recent data of Van Thinh (1967), Comte-Bellot 
(1965) and Clark (1968), which were obtained in channels of almost the Same 
dimensions, also display considerable variation in the maximum value of Gl/uT8 
(2.3, 2.8 and 3.2 respectively for approximately the same Reynolds numbers). 

I 1 I I I 

I 
i 

0 20 40 60 80 100 

4 
FIGURE 31. Longitudinal turbulence intensity near smooth wall. Clark (1968): (a) Re 
= 45600; Comte-Bellot (1965): (b)  Re = 57000, (c) Re = 123000; Laufer (1951), 125 
mm channel: ( d )  Re = 30800; Van Thinh (1967): ( e )  Re = 40000; Hanjalii: & Launder 
(1968): (f) Re = 18500; (9) Re = 55200; (h) Re = 10200 (28  mm channel); Laufer (1951), 
25mm channel: (i) Re = 12000. 0, present data; Re = 36000. 

The authors' earlier data (Hanjali6 & Launder 1968) in the smooth-rough 
channel exhibit maximum values of Gil/uT8 of between 1.8 and 2-1 according to  
Reynolds number. It might a t  first be supposed that here the presence of discrete 
ribs on the opposite surface (providing a strong source of pressure fluctuations) 
could lead to the generation of 'inactive' motions which would cause the 6, 
profiles to  differ from those in a smooth channel-even in the immediate 
vicinity of the surface. However, the difference between the measured intensity 
profiles in the 28 mm and 54 mm channels is not large even though the ratio of 
rib height: channel width was almost twice as large in the smaller duct than in 
the larger. It thus seems likely that the structure within the region shown in 
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figure 31 is sensibly unaffected by the texture (and the distance removed) of the 
opposite surface. 

In  the present investigation, the near-wall region was re-examined at  only one 
Reynolds number (though two profiles were taken on different occasions, these 
two sets of data were indistinguishably different). The instrumentation for the 
present tests differed from the earlier work in that a transistorized anemometer 
and linearizer were employed and gold-plated boundary-layer probes used for 
the traverses; it  may be expected that these changes improved the reliability of 
the data. It is seen from the figure that the resultant GI profile displays appreci- 
ably higher values than the earlier measurements, being in close agreement with 
Van Thinh’s and Laufer’s (125 mm channel) data. Of course, the agreement with 
these workers’ measurements is not a conclusive proof of their mutual accuracy. 
In  view of the very sophisticated sampling technique adopted by Van Thinh, 
however, it  appears likely that, at  a channel Reynolds number of about 40000, 
the peak value of G J U , ~  does lie between about 2.3 and 2.5. 
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